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Abstract—Equations for the cylindrical deformation of thin plates are derived from the equations
of three-dimensional nonlinear elasticity by the method of asymptotic integration. It is assumed
that deflection components are of the order of the lateral dimensions of the plate and that strain
components are small. Nonlinear constitutive equations are used in the model. It is found that
the middle surface is inextensible in the lowest order approximation. Middle surface extensibility
comes in at the next order of approximation. The range of validity of the theory is examined
by considering the solution of some simple problems.

I. INTRODUCTION

The aim of this paper is to derive equations for the large deflection of thin elastic plates
using the technique of asymptotic integration of the equations of nonlinear elasticity.
We consider only cylindrical deformation, assuming a condition of plane strain in the
plate. It is assumed that the plate is thin, that both components of deflection are of the
order of the lateral dimension of the undeformed plate and that all three strain com-
ponents are small.

Dimensionless displaccment and stress components are expanded in a series of pow-
ers of the small dimensionless thickness of the plate. Only enough terms are retained
to obtain a consistent lowest order theory. 1t is found that three terms must be retained
in the displacement expansions and two terms in the stress expansions. The resulting
system of equations can be partially integrated to obtain plate equations. It is found
that the middle surface is inextensible in the lowest order displacement components
and that extensibility effects come in at the next order. This result agrees with the
conclusions reached by Libai and Simmonds [2] for the large deflection of beamshells.
It is also pointed out by them that the boundary conditions must allow the supports to
undergo a large motion in order to permit a large deformation with small strain.

In the following section we analyze the strain-displacement relations assuming a
condition of plane strain. In Section 3 the equilibrium equations are analyzed assuming
a plane stress condition. In Section 4 the nonlinear elastic constitutive equations are
approximated on the basis of an assumption on the nature of the complementary energy
function. The final section considers the solution of some simple problems using the
constitutive equations for linear isotropic elasticity and for the nonlinear orthotropic
behavior of paper.

We remark that the method of asymptotic integration has been used to develop
the von-Karman equations of plate theory by Ciarlet [3, 4]. It has also been used by
Johnson and Urbanik [1] to develop plate equations which extend the von-Karman
theory to allow nonlinear constitutive behavior. In both of these theories the transverse
deflection component is of the order of the plate thickness while the lateral components
are one order smaller.

2. ANALYSIS OF THE STRAIN-DISPLACEMENT RELATIONS

Take the y-direction to be the direction of zero displacement. The non-zero material
strain components are given by:
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where « and w are displacement components and x and z material Cartesian coordinates.

The coordinate direction of x is taken along the middle surface of the undeformed plate

while zis in the transverse direction. Nondimensional coordinates £ and { are introduced
as follows:

2.2)

x=L& z=Hh 2.4)

where h is the undeformed plate thickness and L the lateral plate dimension. The

thinness of the plate is expressed by the requirement that dimensionless parameter e
= h/L be small,

e = hIL < 1. (2.5)
Dimensionless displacement components f and g are introduced by
u=LfE L€, w=LgEte (2.6)
and strain components are scaled as follows
Eu = eexlt, L, €)
E. =ee(t € @7
E. = eex(§, L, €.

It is assumed that functions f, g, e.., ex;, €;. are O(1) with respect to e. Hence,
displacement components are assumed to be large of O(L) while the strain components
remain small, being O(e).

Introduce (2.4), (2.6) and (2.7) into (2.1), (2.2) and (2.3) to obtain
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Next, assume that functions f and g may be expanded in an asymptotic power series
in €.

f(g’ L, €) = fo + efl + ezfz + e (2.11)
g(gs C7 e) ‘;' 8o + €8 + ezgz 4+ e

Functions f; and g; depend on ¢ and {. In order to obtain a consistent theory, it is
necessary to retain at least terms up to €2. Introduce expressions (2.11) into (2.8) and
equate coefficients of powers of €. The first two equations obtained from (2.8) are
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The first two equations obtained from (2.9) are
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= 0. (2.13)

The first three equations obtained from (2.10) are

o\ | (980\* _
(a) +(%) =0 (2.16)
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Equation (2.16) requires that both afo/0{ = 0 and dgy/da{ = 0 so that functions fo
and go are independent of {. We write

fo=U®, g = W(®. (2.19
In terms of U and W, eqn (2.12) takes the form
1+UP+W)yR=1 (2.20)
which has the parametric solution
1 + U’ =cos8(), W = sin8(®). (2.21)

Equations (2.14) and (2.17) are satisfied identically. Equation (2.18) gives

dg (36, (3&r)* _
2% +(a€) +(a§) = 0. 2.22)

This equation has the parametric solution

f _ % _ _
oL sin &, T cosp — 1. (2.23)

Substituting from eqns (2.21) and (2.23) into eqn (2.15) reduces the latter equation to
sin(p — 0) = 0.
The roots of this equation are ¢ = 6 (mod 27) and ¢ = (0.+ w)(mod 2w). We use the

first root since it corresponds to our sign convention for curvature while the second
does not. Therewith, eqns (2.23) yield

fi= —(sin0) { + f1(®) } (2.24)
g = (cos8 - 1) { + gu(®.

With (2.19), (2.21) and (2.24), eqn (2.13) gives the lowest order term in the strain
component E,,.

E,. = €fcos 0 1, + gi1sin® — 0'(}. (2.25)
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Note that the form of fo and g, given by (2.19) and (2.21) prescribe that the middle
surface is inextensible in the lowest order approximation. The slope of the middle
surface is 6(§).

Using (2.6), (2.11), (2.19), and (2.24), we find that the deformation gradients are

d
Fex=1+4 EE =¢os0 + e(—~cos 66’ + f11) + O(e?) 1
aw
F,=1+4+—=cos 0 + O(e)
0z ? (2.26)
Fo=2c _sino + 0
9z
ow . .
F, = % - n 9 + e(—sin 0 0L + gi;) + O(e). )

Note that expressions for strain components E,, and E,, can be obtained from the
third equation in the expansion of eqn (2.9) and the fourth equation in the expansion
of eqn (2.10). These equations have not been considered in the above analysis as they
are not needed in the lowest order approximation.

3. ANALYSIS OF THE EQUILIBRIUM EQUATIONS

Let the generic symbol P denote the Piola-Kirchhoff stress of the first kind and T
the Piola-Kirchhoff stress of second kind. These stress components are related by

P = Txxex + szsz

P, = T F,, + T,,F,, aG.1n)
Pro = ToFye + T F,,

Py = TyuFox + T, F,..

Moment equilibrium is obtained by taking T as symmetric; force equilibrium takes the
form

P 0P

€ +—=0
9§ ;14 (3.2)
P, Py

€ pr + oL = 0.

In order to keep all terms in (3.2) of the same order the following expansions of the
stress components are indicated:

Tox = T[Texo + €Ty + -] W

T; = 7€[Txe0 + €Tiar + -]

T,, = 71€[To0 + €Ty + ']

Py = 7[Pixo + €Prxy + -] r (3.3)

sz = T[szo + E-szl + "']
P, = t€¢[Pyo + €Ppy + -]

P,. = 1€[Py0 + €Pyyy + -]
y,

Here, 7 has the dimension of stress and the coefficients of the expansions are inde-
pendent of e. Equations (3.3) indicate the order of the stress components in this theory.
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Substituting (2.26), (3.1) and (3.3) into (3.2) and equating coefTicients of €, we obtain
the equations of first order:

9 (Txxo COS 6) + 2 (Poo) = 0

ot at (3.4)
-Q(T in 6) + —a—(P )=20
3 xx0 SIN a 220} =

where
Poo =T, ncos0 — T,osin (3.5)
P,o = Tiosin 0 + T,0 cOS 0.

The equations of second order are

3 [Texo (—cOs 0 0°L + f11) + Tox1 cO0S 8 — Tyo5in 6] + -a-(P,,,) =0

3k al (3.6)
aing““’ (—sin 8 8L + gl1) + Ter §in @ + Togo cOs 6] + 5"2 (Po) = O,

Next, define stress resultants and moments by
1/2 112
Nui = f_ " Toxi d;, Nxzi = f-uz szi d; (3.7)
12
Muo = [ Tuoldl
We assume that the surface { = —1 is stress free and that the surface { = +4%is

acted on by dead load components.
Expand these surface dead load components as follows:

P (&, +31) = 1e[ro(f) + eri(§) + -]
P, = (& +4) = 1e[qo(®) + €qi(§) + ). (3.8)

Plate force equilibrium equations are obtained by integrating eqns (3.4) and (3.6)
with respect to {.

diglN,xo cos 8] + ro(§) = 0 (3.9
%g[N,,,,0 sin 8] + go(§) = 0 (3.10)

d
EIE [—Mx0cos 00 + Newo fis + Nerycos 9 — Nyosin®] + ri(6) =0 (3.11)

d . .
aE [(-M:08in 00" + Neo8l1 + Nuasin® + Nygocos 0] + gi(6) =0, (3.12)

Plate moment equilibrium equations are obtained by integrating { times eqns (3.4) with
respect to {,

(—;%[M,,o oS 0] — N,0c080 + N osin0 + 4ro(f) = 0 (3.13)

adZ[M‘“" sin 8] — N0 sin 8 — N0 cos 6 + #go(8) = 0. (3.14)
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In the next section, it will be shown that N, o and M, are determined by constitutive
equations as functions of f,;, g,y and 6. Hence, eqns (3.9)~(3.14) are six equations for
fi1, 8115 8, Nea, Nizo, No. These equations are to be solved subject to appropriate
boundary conditions.

Note that the first order stress components are given by

Peoo = Tixo0c08 8, Py = Tyosinb

Puo

¢ o9
- f-uza_g(T"" cos 8) d (3.15)

4 0 .
Poo = — f_llzgé(TxxO sin 8) d¢.

The last two expressions are obtained by integrating eqns (3.4).
To reduce the number of equations we integrate (3.11) and (3.12) and eliminate
variable N, between them. Assume that the plate occupies the domain 0 < ¢ < 1.

[
Nezo = Nieolfl sin 8 — g}, cos 6) + sin 0 L n(® de
[3
— cos eL @1(®) dE — Py sin 8 + O, cos 0. (3.16)

Constants P, and Q, are the values of ['3, P, d{ and ["3/; P.; d{ at £ = 0. We can
also eliminate N,,o between eqns (3.13) and (3.14) to obtain

0 — Nyo + 3r0cos 0 + dgosin @ = 0. (3.17)

Equations (3.9), (3.10), (3.16) and (3.17) are four equations for fi1, g11, 8 and Ny:o.

4. PLATE CONSTITUTIVE EQUATIONS

In the above treatment it has been assumed that T,, = T,. = 0. The P-stress com-
ponents not exhibited in eqn (3.1) are zero except for P,, = T,,. The equilibrium
equation omitted from eqn (3.2) is identically satisfied. These assumptions are appro-
priate for an isotropic material or for an orthtropic material where the coordinate di-
rections are also directions of material symmetry.

With E;, = E,, = 0, the strain energy density is a function of the four strain com-
ponents E,,, E,,, E.,, E,.,. The stress-strain relations are

T - oH I - oH _ OH _ 8H
T E. ¥ o 9E,,’ = E,’ Y

4.1

Assume that relations (4.1) can be solved for strain components in terms of stress
components and define the complementary energy by

Hc(Tix, Tyyy Tz, Tiz)
= TuExx + TyyEyy + TyEyy + TiEry — H(Exx, Eyy, Err, Ey;). (4.2)
From (3.3) we see that the order of the stress components is given by
T,. = 0(1), T.. = O(re), T, = Ofre). 4.3)
We also assume that T,, = O(1).

One would like to approximate the strain energy function by neglecting dependence
on all strain components except E,, [2]. However, since all of the strain components
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are of the same order [egn (2.7)], this approximation would seem to be hard to justify
on the basis of a direct order of magnitude argument. In fact, it is not possible even
for the linear elastic material. However, it is possible to approximate the complemen-
tary energy function in a rational manner. Consistent with the orders given in eqn (4.3),
we assume that stress components T, and 7., may be neglected in the complementary
energy function to obtain

He ~ HATyx, Tyy) = He(Tox, Ty, 0, 0). (4.4)

This represents an assumption about the nature of the material of the plate. The com-
plementary energy must be of a form such that approximation (4.4) is valid. We note
that it is valid for linear elasticity.

Stain—displacement relations are given by

oH ¢ dHc
~ ~—= 0. .5
T, Ew aT,, 0 “.3)

EXX

Assume the second equation in (4.5) is solvable for T, in terms of T,, and use this
relation to eliminate 7,, from (4.4). We obtain

Hc ~ HC[Txxa Tyy(Txx)] = HC(Txx) (4-6)
dH
E.x T, “.7)

Next, assume that (4.7) can be inverted to obtain T, in terms of E,,. Then, using (2.7)
and (4.3), we see from (4.2) that the strain energy can be approximated by

H = H(Exx) = Txx(Exx)Exx - HC[Txx(Exx)]-
Therewith, the plate constitutive equation is

OH(E,,)
T = oE.. 4.8)
Note that E,, is given as a function of f},, g1, and 6’ by eqn (2.25). Hence, eqn (4.8)
expresses T, as a function of these same variables and is to be used in the equilibrium
equations (3.9)-(3.17).

We note for linear isotropic elasticity the above approximation procedure can be
carried out and gives

E,x 4.9)
v

where E is Young’s modulus and v Poisson’s ratio. We see that the stress magnitude
is T = €eE/1 - v?) and

Tevo = cos 6 f1) + sin 0 gy — 0. (4.10)
The stress resultant N, and moment resultant M, are given by

Nio =cos8 fiy +sin0g), Mo = — ée' 4.11)

which are to be used in eqns (3.9), (3.10), (3.16), and (3.17).
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For paper the strain energy function is given by [1]

H(e) = (c}/c;) log cosh [? (Tﬁ"——)] 4.12)

1 - V2
where
e = vy 'E%, (4.13)

for cylindrical deformation. ¢;, c2, v;, and v, are constants, v, and v, being the ortho-
tropic Poisson ratios, ¢, the initial Young’s modulus and ¢, the ultimate stress in the
x-direction. [In writing (4.12) and (4.13), the x and y directions have been interchanged
from those used in [1].] Actually, (4.12) was shown in [1] to hold where E|, is the middle
surface strain. We here assume it is valid for E;; given by eqn (2.25). From (4.8) and
(4.12), we obtain

= e NT=5D -1 S S
T =eci/V(1 —vivz) and T = " tanh [c.\/(_l—-__w-jE"] . (414

Integrating (4.14) leads to

_ 1 cosh(e, + 1ab’)
N = 76 1 [cosh(e, - ia(-)’)] 4.15)
1 w2 ,
Muo = ¢ f_ " tanh(e, - a8't A (4.16)
where
Ca2€ .
y = ————————(cos 0 f}; + sin 0 gi
[ Cl\/(l—:—vl—vz)( fll gll) (417)
a= C2€
aV = vv)

5. THE “*ELASTICA" AND DEAD WEIGHT PROBLEMS

We next apply these results to the problem where only an axial load is applied at ¢
= Qand £ = 1. We take

12

12 _
h f—l/Z Perdf = =P, -2 Ppdf =0 at§=01 ¢$.n

We also take 7o = ri = qo = qi_= 0. Equation (3.9) and (3.10) then give Ny = 0.
This leads us to set hiteP; = —P and Q, = 0 in eqn (3.16) which then gives N, =
— P, sin 6. Equation (3.17) becomés

Mo + Pysin6 = 0. 5.2)
Equation (5.2) is valid for any material properties. Note that middle surface extensibility
effects do not enter at this level of approximation.

For the linear elastic material eqn (4.11) yields

8" — 12P,sin 6 = 0. (5.3)
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When this equation is written in terms of the original variables, it becomes

2 - ) _
¥+12—(1-E,7{3—3—)Psin9 =0 (5.4)

which is an equation of the same form as the equation for the elastica, as it should be.
For the paper constitutive equation (4.15), N0 = 0 gives e, = 0 just as for the
linear elastic material. Equation (4.16) then yields the following equation for 6

P| sin 0
g—fm ;2 d§
e J-12 cosh?(a0'l)

where we have replaced P, by — P,. This equation is to be solved subject to the bound-
ary conditions 8'(0) = 8'(1) = 0. The solution of the linearized version of this problem
yields the critical buckling load P., = aw?/12¢ for P,. The eigenfunction is

0" + =0 5.5

8 = 0o cos(m§). (5.6)

A standard perturbation analysis yields the postbuckling solution of (5.5) in the form
(5.6) with P, and 0, related by

Py 1 3% .,
Lo - - . i
P(-,- 1+ [8 30 ] 05 (5 )

This result is valid for small 8,.

For a plate loaded by its own transverse dead weight, it can be shown that the dead
weight is of the same order as the go term in eqn (3.8). We thus set g, = ro = 1, =
0. Take the domain of the plate as 0 < ¢ < 1. Equation (3.9) and (3.10) yield

NxxO cos 0 = Po (58)
Nio sin 6 = Qo — qof

where P, is the dimensionless constant horizontal force in the plate and Qo the di-
mensionless vertical force at £ = 0. If the plate is supported at its ends, overall force
equilibrium gives Qo = ¢o/2. Equations (5.8) yield

Neo = Polcos 0 (5.9
— tan-! | 994 _
6 = tan [Po ¢ §)] . (5.10)

The lowest order displacement components, U/ and W, are obtained by integrating eqns
(2.21). Note that the plate is inextensional and the solution (5.10) is determined from
the equilibrium equations alone in the lowest approximatiqn. This would seem to cor-
respond to the ‘‘membrane-inextensional theory'’ discussed by Libai and Simmonds
[2]). Middle surface extension comes into play at the next higher level of approximation.
Equations for f,, and q,, are obtained from eqns (3.16) and (3.17) with 0 given by (5.10)
and N,,o and M,,, given by the appropriate constitutive equations.

In the above solution, it is assumed that the plate is supported at its ends so that it
is capable of carrying the load P,. In general, it is not possible to satisfy the simple
support boundary condition of zero moment at £ = 0, 1. Note that for a dead weight
loaded cantilevered plate, we must have P, = 0 and Qo = go with which (5.8) yields
0 = /2 and N, = qo(1 — &). It is not possible to satisfy the fixed boundary condition
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at the edge. An appropriate boundary layer solution must be added to satisfy the bound-
ary conditions in these dead weight problems.
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